Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 171993, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547967

RESUMO

Calcium nitrate addition is economically viable and highly efficient for the in-situ treatment of contaminated sediment and enhancement of surface water quality, particularly in rural areas. However, conventional nitrate addition technologies have disadvantages such as excessive nitrate release, sharp ammonium increase, and weakened sulfide oxidation efficiency owing to rapid nitrate injection into the sediment. To resolve these defects, we propose a piped-slow-release (PSR) calcium nitrate dosing method and investigate its treatment efficiency and underlying mechanisms. The results illustrated that PSR dosing had a longer half-life (t1/2 = 5.08 days) and a lower maximum apparent nitrate escape rate of 1.28 % than conventional nitrate injection and other dosing methods. In addition, the PSR managed the inorganic nitrogen release into the overlying water, and after the treatment, the nitrate, ammonium, and nitrite concentrations of 0 mg/L, 8.60 mg/L, and 0 mg/L on day 28 were close to those of the control group (0 mg/L, 8.76 mg/L, and 0 mg/L, respectively). Moreover, the PSR method maintained a moderate nitrate concentration of approximately 3000 mg/L in sediment interstitial water by its controlled-release design, thus greatly enhancing the sulfide oxidation efficiency by relieving the inhibitory effects of high nitrate concentrations, with 83.0 % sulfide being eradicated within 5 days. Sulfide-ferrous nitrate reduction (denitrification and dissimilatory nitrate reduction to ammonium) genera (e.g., Sulfurimonas, Thiobacillus, and Thioalkalispira) were successively enhanced and dominated the microbial community, and the related functional genes displayed high relative abundances. These results imply that the PSR dosing method for calcium nitrate, characterized by flexible operation, high efficiency, low cost, and controllable processes, is appropriate for remediating black-odorous sediment in rural areas.


Assuntos
Compostos de Amônio , Compostos de Cálcio , Nitratos , Odorantes , Sulfetos , Nitrogênio , Oxirredução , Desnitrificação
2.
Environ Res ; 190: 109979, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32745537

RESUMO

Nitrate-driven sulfide/ferrous oxidation has been proved a cost-effective approach for river sediments in-situ odor control. However, calcium nitrate addition would sharply increase ammonium concentration in interstitial water and the mechanism was not yet clear. In this work, though sulfide and ferrous iron were efficiently oxidized, about 102% of NH4+ concentration increased in interstitial water on the first day of calcium nitrate injection (30 mg kg dwt-1), and about 31% more NH4+ increase at the 21st days was observed. To discover the mechanism of ammonium sharp release, desorption kinetics experiment was conducted and the results suggested that the short-time sharp releases of ammonium when calcium nitrate was added could be attributed to the chemical extraction of exchangeable ammonium by calcium ion. Furthermore, at the end of treatment, many genus such as Thiobacillus, Sulfurimonas, Thermomonas, and Clostridium, which were closely related to sulfide and ferrous-driven denitrification and dissimilatory nitrate reduction to ammonium (DNRA), were identified by 16S rRNA Illumina sequencing method. These findings indicated the long-time increase of ammonium might be determined by the biochemical processes (e.g. DNRA) driven by nitrate reduction. Therefore, to avoid the impact of ammonium release, an alternative subsurface injection method was introduced in this work, and the results showed that ammonium releases could be well controlled when the injection position was beneath 10 cm of the sediment surface.


Assuntos
Compostos de Amônio , Nitratos , Compostos de Cálcio , Sedimentos Geológicos , Odorantes , Oxirredução , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...